
40 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

COVER FEATURE OUTLOOK

C. Gordon Bell, Microsoft Research (retired)

Ike Nassi, TidalScale and University of California, Santa Cruz

Scalable and coherent shared memory has been a

long-sought-after but elusive goal. In contrast to today’s

popular distributed-computing models, the authors

present a software-defined server architecture that

is a scale-up shared-memory multiprocessor, yet

uses ubiquitous commodity scale-out clusters.

When our exploration of architectures
began, high-performance systems were
few and expensive and access was lim-
ited. Today we have inexpensive, elastic,

computation services that, on-demand, provide a mul-
tiprocessor, multithread computing platform, perhaps
creating the illusion that the underpinning hardware
system just works as expected. However, some experi-
ments on Amazon Web Services (AWS) gave surprising
results.1 Running a CPU- and memory-intensive data
generation application on a four-processor AWS instance
showed normalized CPU utilization of 89 percent on
a program utilizing 32 parallel threads. The applica-
tion took 4,832 CPU seconds (see Table 1). Looking to
explore this a bit further, the degree of parallelism was
reduced to 16 cores, and it actually sped the program up.

Repeating this process, the best trial exhibited a 15.79×
performance improvement using only 10 percent of the
threads. Since I/O was not a factor, this suggests that
memory contention by the physical processors is a sig-
nificant issue. Can we do something about this?

BACKGROUND
The high-performance computer (HPC; also known as
supercomputing) market transition from monomemory
computers to multicomputers began in 1987 when a San-
dia National Laboratories team won the first Gordon Bell
Prize for parallelism using 1,024 individual computers
(referred to as nodes) organized as a single Ncube com-
puter. In 1993, a 1,024-node Connection Machine from
Thinking Machines outperformed all the traditional
supercomputers, such as the Cray YMPs that had reached

Revisiting Scalable
Coherent Shared Memory

 J A N U A R Y 2 0 1 8 41

the limit of being able to scale-up.
The 1994 MPI and Beowulf standards
established the beginning of the tran-
sition to clusters of computers for HPC.
In 2018, all HPC apps run across a col-
lection of a few hundred to up to 10
million computers tightly connected
into a network.

The situation in commercial
transaction processing was consid-
erably different because application
programs operated across a system
that assumed parallelization at the
application level. New programming
languages were developed that had
explicit and implicit concurrency
support. In 1979, a team from Caltech
formed Teradata and built a highly
scalable, parallel relational database
built on “shared nothing” access to
disk storage. Similarly, today’s cloud
web applications can be thought of as
a large collection of parallel and pipe-
lined processes, but again such con-
figurations are static with explicit
process-to-process communication.

In the mid-2000s with the intro-
duction of MapReduce2 and Hadoop,3
a transition in programs occurred that
required access to substantially larger
and more diverse resources. These
techniques all required large memo-
ries. A few years ago, machine learn-
ing began to achieve production sta-
tus. These applications began to look
a lot like HPC, and vice versa. Conver-
gence was occurring. Taken together,
these techniques necessitate advances
in distributed architecture to simplify
programming, because of the need to
manage and analyze ever increasing
amounts of data. These hardware and
software architectures are being called
on to provide more storage, more con-
nectivity, and more computing power,
including franken-architectures with
diverse collections of cpus, gpus,

field-programmable gate arrays, and
TPUx. The cost of managing these dis-
tributed architectures is growing as a
result of the complexity of managing
the infrastructure to deal with it and
the software modifications needed.

In current architectures, 48-bit
memory address limitations stand in
the way of very large memories. Pro-
cessors need physical paths to memory
for addressing and data transfer, and
if the memory is shared, there needs
to be arbitration mechanisms among
the processors to coordinate access to

shared memory. As the number of pro-
cessors (n) increases, the amount of
coordination goes up by n2. Therefore,
we trade hardware complexity for soft-
ware complexity. We build distributed
systems that allow data and computa-
tion to spread out over a large number
of servers that partition data and com-
putations as well as manage server
operations. But whereas data parti-
tioning might be straightforward,
and the computation partitioning
might be straightforward, doing both
at the same time is far more difficult.

TABLE 1. Results of experiment in which CPU- and
memory-intensive data generation application was run

on four-processor Amazon Web Services instance.

Degree of
parallelism CPU seconds

Normalized CPU
utilization (%)

Total elapsed time
(s)

1 259.0 3 257.7

2 335.0 6 165.0

2 333.0 6 164.2

3 306.0 9 102.4

3 375.0 10 122.5

4 484.0 13 118.6

4 482.0 13 117.7

4 475.0 13 116.1

4 356.0 13 86.4

5 563.0 16 110.4

5 590.0 16 115.6

6 670.0 19 109.2

8 993.0 26 121.1

16 2,200.0 50 137.1

32 4,832.0 89 170.1

42 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

Further, if we embed these decisions
in our software, then when the land-
scape changes, software has to be
revised. Often, data has to be reparti-
tioned when the amount or “shape” of
it changes. We build increasing layers
of abstraction to address this, which
often has unintended negative per-
formance consequences. Data center
operators and software engineers face
these complexity challenges daily.

Can we rethink the problem and
build a different kind of computer that
is much easier to deal with than the
situation we now face with the perva-
sive, inexpensive, ubiquitous clusters
that industry provides? In contrast
to these scale-out systems, we define
a new scale-up system. Scale-up has
the advantage of having a much sim-
pler programming model but at a cost
of expensive, less flexible hardware;
scale-out has the advantage of more
flexible and cost-efficient hardware,
but incurs a higher cost of software
complexity and data partitioning. For-
tunately, these two models need not be
mutually exclusive. We can use scale-
out hardware to build scale-up com-
puters which, in turn, can run scale-
out software.

Early attempts at solving the scale-
up problem were not altogether success-
ful. Two examples immediately come
to mind: the Encore Ultramax4 built for
DARPA and the KSR-1.5 Both provided
an easy-to-use programming model:
multiple processors sharing strongly
cache-coherent memory. Many have
pointed out that earlier advances in
single-stream performance of micro-
processors made these higher-com-
plexity projects less desirable than the
alternative of simply utilizing faster
uniprocessors. But microprocessors
hit a wall; single-stream performance
stopped increasing, constrained by

limitations on power consumption and
heat dissipation. Single-stream proces-
sors evolved into multicore processors.
Even that was not enough to satisfy
emerging needs. Hyperthreads, which
give the illusion of being processors but
in fact contend for common hardware,
began to emerge for greater system uti-
lization. The levels of hierarchy grew to
encompass multiple hyperthreads per
core, multiple cores per processor, mul-
tiple processors per server, and multiple
servers per rack. This in turn resulted
in racks of multiprocessor multicore
servers, rows of racks of servers, and
networked datacenters each consist-
ing of the rows of racks of servers at
major cloud providers. Although some
of this cannot be avoided, it is probably
worth asking whether we could sim-
plify at least some of it. Could we also
reduce the number of OS images under
management?

WHY REVISIT THIS TOPIC
NOW?
In 1984, we submitted a research pro-
posal to DARPA to develop a distrib-
uted approach to managing coherent
shared memory using recently intro-
duced hardware multiprocessors con-
nected together in a bus topology.4 The
proposal was subsequently funded,
and the resulting machine was demon-
strated to DARPA in early 1989.

Bell writes:6

The most important part of virtual
memory is locality as embod-
ied in the concept of the working
sets and hardware managed
caches. The aspects of virtual
memory and caches are what
the all-cache architecture uses
to “cache” the active portion of a
program and automatically exploit
temporal and spatial locality.

He also writes:

Cache only, a natural extension
of virtual memory and multipro-
cessor caching, first permits a
single data item to exist in more
than one location at a time. Once
a memory page is brought from
secondary memory to one of the
nodes, hardware and software
automatically move, replicate
and control data flow with other
nodes on an elemental basis.

However, in 1999, Bell published a
paper7 that questioned whether a more
costly and complex distributed approach
to maintaining coherent shared mem-
ory would ever find widespread adop-
tion and be competitive with simple and
straightforward clusters. Hence, large
programs were doomed to intensive
reprogramming using MPI.

In 2012, we were discussing the
topic again, and decided it was worth
taking another look at the problem
of single-systems image systems,8,9
and distributed shared memory.10
The company TidalScale was formed
to build a software-defined, scale-up
server composed of multiple scale-out
computers. TidalScale’s goals were the
following:

 › Use off-the-shelf, relatively inex-
pensive commodity servers.

 › Take advantage of hardware
advances that support vir-
tualization as a first-class
part of modern computing
architectures.

 › Build a virtual machine that
would run across a tightly cou-
pled set of networked servers.
The virtual machine would be
built on a set of cooperating
hyperkernels, each running on

 J A N U A R Y 2 0 1 8 43

a single discrete server. We call
this a software-defined server
(SDS; Figure 1). This is the inverse
of what we think of as virtual
machines,11 in which a number of
virtual machines run simultane-
ously on a single server.

 › Create a resulting architecture
that could scale linearly in cost
and dynamically over time.

 › Run any one of a set of guest OSs
from their original distributions
in the virtual machine with no
changes at all (that is, they are
bit-for-bit compatible).

 › Continue to run without mod-
ification any application that
already runs on one of those OSs.

 › Enable the virtual machine
to optimize its own behavior
through introspection and
machine learning without any
human intervention.

 › Allow the virtual machine to
inherit, as much as possible,
future hardware innovations.

ACHIEVING CHAMPAGNE
SCALABILITY ON A BEER
BUDGET
A recent paper12 discusses an inter-
esting financial application using
historical stock information that
uses approximately 6 Tbytes of an in-
memory data in a table containing 6M
rows and sorts the rows by one of the
columns. It should have been simple,
but because of memory limitations,
it was not. Rather than moving rows
of data around in memory, we created
an array of pointers to rows and sorted
the array of pointers. While this is the
obvious algorithmic solution, it is prob-
lematic. One can buy machines today
with large amounts of memory, but
unlike clusters, the cost of the machine
is not linear in the size of memory.

The availability of large coherent dis-
tributed shared memory enabled the
more straightforward solution. It was
also affordable, because it enabled a
system that can evolve over time and
has a strictly linear cost profile (that
is, adding a node to a 10-node system
increases the cost by only 10 percent).
Moreover, it increases the aggregate
available memory and PCI bandwidth
by the same 10 percent.

Many hardware and software inno-
vations have emerged in the last 30
years that can be exploited, including
but not limited to

 › increasing memory density;
 › emergence of larger caches
with more levels in the cache
hierarchy;

 › convergence on the X86 hard-
ware instruction set;

 › emergence of high-volume,
cost-optimized computer
systems;

 › emergence of multicore proces-
sors with increasingly higher
core density;

 › broad use of commodity OSs and
applications that support sym-
metric multiprocessing;

 › emergence of multiple multicore
processors that can now coexist
on a single motherboard;

 › hardware support for and
broad use of high-performance,
binary-accurate virtualization
software; and

 › lower latency networks based
on cost-effective VLSI switch-
ing capable of high bandwidth
utilization.

One way to exploit these advances
would be to build large, scalable coher-
ent memories that can be easily uti-
lized by a large number of processors.
However, this is easier said than done.
Modern OSs are written to use proces-
sors having a view of memory that is
symmetric and strongly coherent and
with uniform access latencies. While
it is certainly true that OSs have inter-
faces that allow applications to exploit
nonuniform latencies, they are diffi-
cult to use effectively. Further, it is

HyperKernel …

Application

Operating system

TidalScale software-de�ned server

Uses patented machine learning to transparently align resources

CPUCPU

CPU CPU

RAM
RAM

RAM

RAM
CPU

RAM

RAM

RAM

CPU

RAM

RAM

RAM

CPU

CPUCPU

RAM

RAM

RAM

RAM RAM

RAM

HyperKernel HyperKernel HyperKernel HyperKernel

FIGURE 1. TidalScale software-defined server.

44 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

sometimes difficult to maintain the
necessary changes as the data and
compute landscape changes. Simi-
larly, applications have similar views
of virtual memory, in that main mem-
ory access is assumed to have the same
uniform latencies.

A basic tenet of computing is that
caching improves performance. Larger
caches are generally better than smaller
ones. More levels of cache hierarchy
work. Intel Xeon processors provide
three cache levels, called L1, L2, and
L3. Access to primary memory without
caches is not particularly fast. Typical
access ratios are shown in Table 2.

Multiple levels of caches help sat-
isfy the illusion of low latency. It works
well, up to a point. Hardware-based
caches have limited, fixed sizes defined
by physical silicon-layout constraints
and cost. In addition, coherency algo-
rithms are defined in hardware. In
contrast, software is far more flexible.

Extending the model, the Tidal-
Scale hyperkernel models all the

primary memory DRAM on a moth-
erboard as an L4 cache of the virtual
machine. In a sense, we have replaced
all physical memory with a distributed
L4 cache. The guest OS, running in a
virtual machine, does not know this,
in the same way that a guest applica-
tion does not know when it is accessing
data out of an L3 cache instead of going
directly to DRAM. Some people refer
to this as an “all-cache” design. No
changes to the guest OS are required.
From the above ratios, we now see the
“magic” as to why software caching
works—several hundred instructions
can be executed in the time it takes to
move data from L4 to a register.

Certain applications might behave
poorly given the limitations of L1, L2,
and L3. Experienced users can write
programs that exhibit very poor per-
formance on today’s “bare metal”
servers. But this does not mean that
we should get rid of caches, because
in practice we know the benefits of
caches over a wide range of applica-
tions and have broadly concluded
that caches are helpful. Do certain
applications behave better by care-
fully exploiting nonuniform memory
access latencies? Yes.

 It is beyond the scope of this article
to fully describe all the ways virtual-
ization is now supported in hardware,
but it is perhaps sufficient to review
the process of an application accessing
memory. An application typically ref-
erences memory in a virtual address
space. When a virtual address is refer-
enced by a processor running the appli-
cation, the processor translates that
virtual address to a physical address
by consulting a page table that maps
application virtual addresses to phys-
ical addresses. Page tables are main-
tained by an OS. We call an OS running
on a virtual machine a guest OS, and

the page tables that the guest manages
become first-level page tables.

In a virtual machine, there can be
multiple levels of virtual to physical
address translation. Just as an OS takes
an application virtual address and
translates it to what it thinks is a phys-
ical address, a virtualization system
takes that guest physical address and
converts it to a real physical address.
Today, two levels of address translation
are widely supported, but the key con-
cept is extendable in that one could eas-
ily envision stacked virtual machines
using the similar algorithms.

Today, a software construct called
containers largely obviates the need for
additional levels of virtual machines.
Containers let a user package pro-
grams and data, instantiate, transmit,
and run them with consistent results
and similar performance on other sys-
tems. In the world of big data, larger
containers are preferred. Because con-
tainers run above an OS, they work
without modification in an SDS.

However, there is a much less obvi-
ous advantage in having the machinery
to support these virtual machines. Due
to the greater flexibility of software
over hardware, the machinery manag-
ing the interface between virtualized
machines and physical machines is
an excellent place to implement many
optimizations and enhancements that
cannot easily be implemented in hard-
ware. With this machinery, we do not
have to modify an OS, which might be
proprietary, or in the interest of stan-
dardization, tightly controlled. Vir-
tualization software can implement
introspection, intelligence, machine
learning, resource tracking, teleme-
try statistics, mobilization, working
set tracking, and I/O virtualization.
Through message passing, it can also
provide an enhanced global view of the

TABLE 2. Typical access
ratios for three Intel Xeon
processor cache levels.

Source
Latency

(ns)

Registers 0

L1 4

L2 10

L3 near, unshared, unmodified 40

L3 near, shared, unmodified 65

L3 near, shared, modified 75

L3 far min 100

L3 far max 300

 J A N U A R Y 2 0 1 8 45

behavior of an SDS without having to
introduce any shared hardware state.

We have found it desirable to intro-
duce that concept of a virtual mother-
board. At TidalScale, we provide a virtual
motherboard as part of an SDS. A virtual
motherboard can span many individ-
ual hardware servers (Figure 1). Unlike
a physical motherboard, it can grow and
shrink either explicitly on a user-driven
basis, or automatically as needed.

Resources like virtual general-
purpose processors, virtual memory,
virtual networks, and virtual disks
can migrate. Virtual interrupts can be
remotely delivered. As long as the basic
hardware abstractions expected by the
OS are not violated, a virtual machine
can look to the OS just like a physical
machine. Because the virtual machine
looks like hardware from the OS’s point
of view, compatibility tests are run as if
the virtual machine were in fact a phys-
ical machine. Today, multiple OSs are
supported (Centos, Red Hat, Ubuntu,
and FreeBSD). Windows Server runs
but is not released at this time.

There is an identical instance of the
hyperkernel running on each node of
the virtual machine. Due to physical
hardware boundaries, a physical pro-
cessor cannot directly address every
guest physical address. When a guest
physical address needs to be read or writ-
ten, it must be translated into a physical
address that the processor can access.

This translation is handled through
the processor’s second-level page
tables. When software makes a ref-
erence to a guest physical address, if
the page of memory containing that
address is resident on the node that
has the processor that generated that
address, the address is represented in
the second-level page table. Automatic
address translation hardware will
then translate that address to a guest

physical address and then to a real
physical address as it normally does by
using the first- and second-level page
tables, with no performance degrada-
tion. But, if the memory address is not
present in the second-level page table,
the hardware cannot completely trans-
late that guest address to a real physi-
cal address, the processor generates an
interrupt. The hyperkernel fields that
interrupt, and analyzes the request,
similar to what an OS might do when it
needs to copy a page that is not memory-

resident, but only resident on backing
store. That analysis might result in a
request for that page to be sent from
a different node, or it might result in
a decision to migrate that virtual pro-
cessor to the node that has that page of
memory. Page reads and page writes
are handled differently. Readable
pages can be replicated,6 but a writable
page requires additional overhead to
remove that page from the L4 cache
of other nodes that might have a copy
(invalidation). (The actual set of steps
is far more complex than what we have
outlined.)

To migrate a virtual processor, the
hyperkernel uses a standard mecha-
nism to take a snapshot of the state of
the processor (at this writing, approx-
imately 6,400 bytes of data) and sends
it in a message over the dedicated
Ethernet to the chosen destination,

where it can be restored onto another
physical processor. Saving and restor-
ing processor state is now standard
for processors supporting virtualiza-
tion. The program counter has not
advanced, so the instruction is then
restarted. Because the page and the
virtual processor are now co-resident,
the processor continues running. It
is possible that the instruction gen-
erates additional interrupts to access
different nonresident pages, but the
mechanism is the same. When the vir-

tual processor migrates, its updated
location is recorded. However, for
reliability, we never assume per-
fect location knowledge, because the
processor might have subsequently
remigrated.

WHY DOES A SOFTWARE-
DEFINED, SCALE-UP
COMPUTER RUNNING ON A
COMPUTER CLUSTER JUST
WORK?
In his seminal paper on working sets,
Peter Denning13 asserted that proces-
sors needing pages can often arrange
to have those pages in memory rather
than backing store. We have signifi-
cantly generalized this notion of work-
ing sets to include not only memory
but processors, I/O, interrupts, stor-
age, and so on. If we could do a per-
fect job, we would make sure that all

RESOURCES LIKE VIRTUAL GENERAL-
PURPOSE PROCESSORS, VIRTUAL

MEMORY, VIRTUAL NETWORKS, AND
VIRTUAL DISKS CAN MIGRATE.

46 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

processors were co-located with all
the memory they reference. Of course,
we cannot guarantee that in general,
but on a statistical basis, the system
works well. It is also important that
once a working set is established, it
is not unnecessarily destroyed. Fur-
ther, because each hyperkernel inde-
pendently learns about the state of
the computation as it proceeds, it con-
tinues learning about the pattern of
memory accesses for virtual proces-
sors and can factor that into discrimi-
nating between migration versus page
copy or page move.

The hyperkernel can also rate
the goodness of the decisions it is
making and provide strategic feed-
back to itself. For example, it is very
straightforward to track guest exe-
cution time and the number of stalls.
If the ratio between them is high, the
computation is “good”; if not, it can
use improvement. The hyperkernels,
taken together as a virtual machine,
begin to automatically adapt to the
pattern of memory access for each vir-
tual processor.

To minimize overhead, the hyperk-
ernel needs to minimize

number of stalls * the average stall time .

Each hyperkernel instance main-
tains a model of its own behavior and,

through introspection, can share it
among its peers and adjust its behav-
ior. These algorithms are run very
frequently, and this allows for the vir-
tual machine to quickly adapt to the
observed pattern of accesses.

This is where the machine learn-
ing comes in. The hyperkernels, taken
together, watch the progress of the
computation, and through coordina-
tion, learn good ways of dealing with
locality and nonlocality. They then
remember the decisions they make
and use those decisions to help make
subsequent decisions.

PERFORMANCE
CONSIDERATIONS
Our goal is to achieve 100 percent
binary compatibility, both in OSs and
applications, and thereby substantially
simplify the computer system land-
scape while at the same time providing
good performance and high reliability.
To do that, we designed a very general
system that works over many classes of
applications. Our goal is to do as good
a job as we can on every workload run-
ning on every popular OS.

This has been largely achieved. All
common applications we have tested
work (MySQL, Oracle, SAP/Hana, appli-
cations in R, Python, and so on).

We also need to consider the per-
formance of these systems. It might
not be possible to broadly characterize

classes of applications as good can-
didates for SDSs. It is important to
realize that the execution profile of
an individual application is depen-
dent only on the program and its data.
This access pattern is fixed for single-
threaded applications. The actual per-
formance might vary according to
processor speed, cache size, levels of
cache hierarchy, amount of memory,
memory bandwidth, onboard commu-
nication contention, paging activity,
interference from other processes or
processors, and so on, but the pattern
of access is generally deterministic
(more so for single-threaded programs
than multithreaded programs). Unfor-
tunately, there is no expectation that
programs in the same application class
will share the same access patterns.

Specific access patterns are not gen-
erally factored into processor design.
Designers test against existing rep-
resentative workloads. There was,
and still is, no guarantee that today’s
architecture will be appropriate for
tomorrow’s workloads. This has noth-
ing at all to do with the concept of a
virtual server; rather, it is fixed by the
requirements of sample benchmarks.
At TidalScale, we have adopted a sim-
ilar approach.

To get good performance, we need
to minimize L1–L4 cache misses. With
the hyperkernel managing L4, if a
page of memory is not on the node that
is running some core that is request-
ing that page, we incur overhead. If
it were L1–L3, hardware might trig-
ger a cache invalidation, a TLB shoot-
down, and a new copy might have to
be fetched from memory. The situa-
tion is the same with L4, except that
the hyperkernel does not fetch it from
local main memory but, rather, from
remote memory. This results in a net-
work transaction between nodes.

WE DESIGNED A VERY GENERAL SYSTEM
THAT WORKS OVER MANY CLASSES OF

APPLICATIONS.

 J A N U A R Y 2 0 1 8 47

This is analogous to what a processor
needs to do when accessing memory
over Intel’s QPI, SCI, or AMD’s Hyper-
Transport. L1–L3 latencies vary by, for
example, memory contention, number
of sockets, number of memory banks,
speed of memory, and available band-
width to memory. The same is true
with the hyperkernel’s distributed L4
cache. As we suggested earlier, mem-
ory access times might be surprising.

The questions about performance
of this sort of software virtualiza-
tion reduce to the question of how
often a page access pattern causes
cache “breakage.” The simple answer
is that cache misses occur in the case
of L1–L3, when the cache is not smart
enough to predict future access pat-
terns. This is generally unpredictable.
Larger cache sizes for L1–L3 reduce
the probability of cache misses. The
same is true for L4. But the L4 cache
size of an SDS is enormous relative to
the sizes of L1–L3. The L4 cache on the
hyperkernel consists of all the mem-
ory on the motherboard. Therefore,
the L4 cache size might be 256 Gbytes,
500 Gbytes, 1 Tbyte, or more. Also,
the hyperkernel has the advantage
of much more sophisticated cache-
coherency and cache-management
algorithms than can be implemented
in silicon.

There might be concern that this
sort of system would put an enor-
mous amount of pressure on the vir-
tual backplane and require enormous
bandwidth. This is not the case. If
the SDS can co-locate processors and
memory, there is no overhead at all.
Smarter algorithms coupled with
machine learning show a measured
bandwidth utilization of 5 percent
for a class of simulation applications
on a dedicated virtual backplane (for
example, 10 Gigabits Ethernet).

APPLICATIONS: THE PROOF
IS IN THE …
Earlier we raised the question about
which classes of applications are par-
ticularly well suited for SDSs, and
which are not. Unfortunately, this is
very difficult to determine. Applica-
tion classes do not display sufficient
uniformity in their usage of different
layers of L1–L4 cache hierarchy. If past
access patterns are not a good predic-
tor of future access patterns, the prob-
ability of cache misses can be high.

L4 cache hit statistics dominate
performance. Two examples of poor
L4 cache performance have been
observed:

1. In a specific implementation
of computational genomic
sequencing, when run on a
software-defined server whose
nodes had 256 Gbytes of real
memory, a large array (250
Gbytes) was being rehashed on
every update, making pre-
diction difficult. As a result,
there was a high probability
of not having that part of the
array local to a node when
needed. When the memory
size was increased from 256 to
320 Gbytes, the problem was
resolved. The initial program
had been trying to conserve
memory, which is not a good
idea when the amount of mem-
ory is adjustable. Once realized,
a new version of the program
resolved the problem.

2. The second instance also has
to do something that is dif-
ficult to predict: in a heavily
multithreaded (multiproces-
sor) application, we observed a
lot of contention on a cen-
tral shared lock in a Python

runtime library, causing the
containing page to frequently
migrate between nodes. How-
ever, the same contention
pattern would happen among
multiple cores on different
processors on a single moth-
erboard when accessing the
same lock. The L1–L3 caches
of those processors would
have a difficult time figuring
out which cache is the best
one to contain the lock, and
as a result, the lock would
constantly migrate between
caches, resulting in poor per-
formance. When this applica-
tion was modified to reduce
unnecessary sharing, perfor-
mance increased by an order
of magnitude.

The system performs particularly
well when we find a use case that hits
the “memory cliff”—a program and
its data that could benefit from being
totally memory resident with suffi-
cient available memory. The desired
memory footprint need not be very
much larger than the available mem-
ory14 to cause thrashing, which then
causes an OS to start paging. This is
entirely normal and frequently hap-
pens. The application will continue to
work, but it will underperform. Unfor-
tunately, no matter how fast a backing
store is, it is several orders of mag-
nitude slower than DRAM. Even the
fastest SSDs on the market are often
three orders of magnitude slower than
DRAM. Faster backing store latencies
have never been able to compete with
DRAM latencies.

Consider the following case
study.15 An application ran a MySQL
job of three queries over a data-
base with 100,000,000 rows and 100

48 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

columns, taking seven hours to com-
plete on a server with 128 Gbytes of
memory. The memory required was
greater than the memory capacity of
the server, resulting in frequent pag-
ing. When replaced with two 96-Gbyte
nodes for a total of 192 Gbytes of physi-
cal memory running an SDS, the exact
same set of queries on exactly the
same data took about seven minutes
to complete, resulting in a 60× perfor-
mance speedup. Paging was entirely
eliminated.

In another study, we worked with
a large financial institution to run an

analytics simulation model of customer
behavior. This was not a performance
experiment in the traditional sense:
the customer had never been able to
run a simulation this large before, so
there was no before-and-after compari-
son. The model was run on an SDS with
3.5 Tbytes of memory, running trans-
parently across five physical servers.
Because the customer could perform
the simulation in memory, it was able to
run the simulation at a 1:1 granularity
level and perform a three-part analy-
sis including granularity analysis,
sensitivity analysis, and model opti-
mization. In essence, this experiment
removed traditional limitations and
enabled exploratory analysis without
changing the models, tools, or operat-
ing environment.

COMPATIBILITY AND
RELIABILITY
Compatibility is very clear. Because
the hyperkernel looks like hardware
to the OS, compatibility should be, and
is, 100 percent.

Additionally, the guest has its own
reliability features, for example, RAID.

Although the general topic might
be beyond the scope of this article,
the SDS provides new ways to improve
reliability due to the new virtualiza-
tion level mentioned earlier.

When the following common condi-
tions are satisfied, we gain in reliability:

 › Early indicators signal a possible
impending hardware failure.

 › Mechanisms exist that allow con-
tinued correct operation prior to
an unrecoverable failure.

 › There is sufficient time between
early indicators and the unrecov-
erable failure to adjust behavior.

Considering that resources are all
mobile, previously configured hot
standby machines can be utilized.
When failure is suspected to occur
in the near future due, for example,
to soft error-correcting code errors,
rising server temperature, or higher
than normal network anomalies, it
can be dealt with by dynamically add-
ing an additional hot standby node to
the cluster, informing all nodes about

the pending node failure so that they
do not migrate any virtual proces-
sors to it, and having the failing node
evict virtual processors at the earliest
possible time, and pages of memory
in active use. The mechanisms to do
this all exist as a byproduct of resource
mobility. For example, if a processor
fails on access to a page on a remote
node, we would normally migrate the
processor to that node, or migrate the
page to the requesting processor. If the
remote node is failing, we will migrate
the page to some other node that has a
copy. In other words, rather than trying
to come close to the reliability of a sin-
gle server, our goal is to have the SDS
exceed it, because we can replace nodes
containing resources in real time with-
out rebooting the guest system.

We have presented the case for
an innovative, modern dis-
tributed, coherent, shared

memory system hosted by virtually any
cluster of computers. The advantages of
the SDS architecture are clear. A single
system image provides a much simpler
programming model, and a much sim-
pler datacenter server management
model, especially for large containers.
Scale-out systems are more complex
from a software and operational sup-
port perspective, but less expensive
than traditional HPC scale-up comput-
ers. Scale-up is simpler for applications
and operations. The advantageous
hardware cost and flexibility efficien-
cies of scale-out can be achieved with
the inherent simplicity of scale-up
using the same cost-efficient hardware.

We have shown here

 › that both scale-up and scale-out
systems can effectively host an
SDS;

APPLICATIONS CAN BE WRITTEN IN A
MORE CONVENTIONAL AND SIMPLER

WAY WHEN HOSTED BY SDSS.

 J A N U A R Y 2 0 1 8 49

 › that by introducing a layer
of software above the hard-
ware but below the OS, we can
increase the set of automatic
optimization possibilities and
create a place to introduce
machine-learning into computer
systems without having to cre-
ate new hardware;

 › that, in the aggregate, mem-
ory and I/O bandwidth can be
increased without resorting to
new hardware designs; and

 › that by mobilizing both virtu-
alized processor and memory
resources we minimize inter-
connect bandwidth require-
ments. Applications can be
written in a more conventional
and simpler way when hosted
by SDSs. SDSs often reduce the
need for explicit data partition-
ing and partitioning manage-
ment. This translates directly
to the ability to build large,
diverse application programs
reliably and rapidly.

ACKNOWLEDGMENTS
We thank Peter Christy, Charles Levine,
and the referees for their comments on
earlier versions of this article.

REFERENCES
1. C. Levine, personal communication.
2. J. Dean and S. Ghemawat,

“MapReduce: Simplified Data Pro-
cessing on Large Clusters,” Proc. 6th
Symp. Operating Systems Design &
Implementation (OSDI 04), 2004, p. 10.

3. D. Cutting, “ Welcome to Apache
Hadoop!,” Apache Hadoop, 18 Nov.
2017; adoop.apache.org.

4. G. Bell. et al., “The Encore Contin-
uum: A Complete Distributed Work-
station-Multiprocessor Computing
Environment,” Proc. Nat’l Computer

Conf. (NCC 85), 1985, pp. 147−155.
5. KSR-1 Technical Summary, Kendall

Square Research, 1992.
6. G. Bell, “Scalable Parallel Computers:

Alternatives, Issues, and Chal-
lenges,” Int’l J. Parallel Programming,
vol. 22, no. 1, 1994, pp. 3–46.

7. G. Bell and C. Van Ingen, “DSM
Perspective: Another Point of View,”
Proceedings of the IEEE, vol. 87, no 3.,
1999, pp. 412–417.

8. R. White, “The Single System Image
Feature Delivers Greater Flexibility
and Resilience,” IBM Systems Mag.,
May 2013; www.ibmsystemsmag
.com/mainframe/administrator
/Virtualization/ssi_feature_zvm.

9. R. Buyya, “Architecture Alternatives
for Scalable Single System Image
Clusters,” Proc. Conf. High Perfor-
mance Computing on Hewlett-Packard
Systems (HiPer 99), 1999; www
.buyya.com/papers/ssiArch.html.

10. J.K. Ousterhout et al, “The Case

for RAMClouds: Scalable High-
Performance Storage Entirely in
DRAM,” SigOPS, Operating System
Rev., vol. 43, no. 4, 2009, pp. 92–105.

11. M. Rosenblum, “The Reincarnation
of Virtual Machines” ACMQueue,
vol. 2, no. 5, 2004, pp. 34–40.

12. I. Nassi, “Scaling the Computer to the
Problem: Application Programming
with Unlimited Memory,” Computer,
vol. 50, no. 8, 2017, pp 46–53.13.

13. P.J. Denning, “The Working Set
Model for Program Behavior,” Comm.
ACM, vol. 11, no. 5, 1968, pp. 323–333.

14. A. Aho. P.J. Denning, and G. Ull-
man, “Principles of Optimal Page
Replacement,” J. ACM, vol. 18, no. 1,
1971, pp. 80–93.

15. I. Nassi, “Advances in Virtualization
in Support of In-Memory Big Data
Applications,” Proc. Int’l Workshop
High Performance Transaction Sys-
tems (HPTS 15), 2015; www.hpts.ws
/papers/2015/tidalscale.pdf.

ABOUT THE AUTHORS
C. GORDON BELL is a Microsoft researcher emeritus (retired); former head

of R&D at Digital Equipment Corp.; a Fellow and member of ACM, AMACAD,

IEEE, NAE, and NAS; and a Computer History Museum founding trustee. He

has received several honors including CMU and WPI doctorates (hon.), the

IEEE von Neumann medal, and the 1991 National Medal of Technology for

work on computers, lifelogging, and new ventures. Contact him via gordonbell

.azurewebsites.net.

IKE NASSI is the founder, chairman, and chief technical officer of TidalScale;

an adjunct professor of computer science at the University of California, Santa

Cruz; and a founding trustee of the Computer History Museum. His research

interests include programming languages, OSs, system architecture, and the

history of computer science and mathematics. Nassi received a PhD in com-

puter science from Stony Brook University. He is a Senior Member of IEEE. Con-

tact him at ike.nassi@tidalscale.com.

