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Scalable and coherent shared memory has been a 

long-sought-after but elusive goal. In contrast to today’s 

popular distributed-computing models, the authors 

present a software-defined server architecture that 

is a scale-up shared-memory multiprocessor, yet 

uses ubiquitous commodity scale-out clusters.

When our exploration of architectures 
began, high-performance systems were 
few and expensive and access was lim-
ited. Today we have inexpensive, elastic, 

computation services that, on-demand, provide a mul-
tiprocessor, multithread computing platform, perhaps 
creating the illusion that the underpinning hardware 
system just works as expected. However, some experi-
ments on Amazon Web Services (AWS) gave surprising 
results.1 Running a CPU- and memory-intensive data 
generation application on a four-processor AWS instance 
showed normalized CPU utilization of 89 percent on 
a program utilizing 32 parallel threads. The applica-
tion took 4,832 CPU seconds (see Table 1). Looking to 
explore this a bit further, the degree of parallelism was 
reduced to 16 cores, and it actually sped the program up. 

Repeating this process, the best trial exhibited a 15.79× 
performance improvement using only 10 percent of the 
threads. Since I/O was not a factor, this suggests that 
memory contention by the physical processors is a sig-
nificant issue. Can we do something about this?

BACKGROUND
The high-performance computer (HPC; also known as 
supercomputing) market transition from monomemory 
computers to multicomputers began in 1987 when a San-
dia National Laboratories team won the first Gordon Bell 
Prize for parallelism using 1,024 individual computers 
(referred to as nodes) organized as a single Ncube com-
puter. In 1993, a 1,024-node Connection Machine from 
Thinking Machines outperformed all the traditional 
supercomputers, such as the Cray YMPs that had reached 
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the limit of being able to scale-up. 
The 1994 MPI and Beowulf standards 
established the beginning of the tran-
sition to clusters of computers for HPC. 
In 2018, all HPC apps run across a col-
lection of a few hundred to up to 10 
million computers tightly connected 
into a network.

The situation in commercial 
transaction processing was consid-
erably different because application 
programs operated across a system 
that assumed parallelization at the 
application level. New programming 
languages were developed that had 
explicit and implicit concurrency 
support. In 1979, a team from Caltech 
formed Teradata and built a highly 
scalable, parallel relational database 
built on “shared nothing” access to 
disk storage. Similarly, today’s cloud 
web applications can be thought of as 
a large collection of parallel and pipe-
lined processes, but again such con-
figurations are static with explicit 
process-to-process communication.

In the mid-2000s with the intro-
duction of MapReduce2 and Hadoop,3 
a transition in programs occurred that 
required access to substantially larger 
and more diverse resources. These 
techniques all required large memo-
ries. A few years ago, machine learn-
ing began to achieve production sta-
tus. These applications began to look 
a lot like HPC, and vice versa. Conver-
gence was occurring. Taken together, 
these techniques necessitate advances 
in distributed architecture to simplify 
programming, because of the need to 
manage and analyze ever increasing 
amounts of data. These hardware and 
software architectures are being called 
on to provide more storage, more con-
nectivity, and more computing power, 
including franken-architectures with 
diverse collections of cpus, gpus, 

field-programmable gate arrays, and 
TPUx. The cost of managing these dis-
tributed architectures is growing as a 
result of the complexity of managing 
the infrastructure to deal with it and 
the software modifications needed.

In current architectures, 48-bit 
memory address limitations stand in 
the way of very large memories. Pro-
cessors need physical paths to memory 
for addressing and data transfer, and 
if the memory is shared, there needs 
to be arbitration mechanisms among 
the processors to coordinate access to 

shared memory. As the number of pro-
cessors (n) increases, the amount of 
coordination goes up by n2. Therefore, 
we trade hardware complexity for soft-
ware complexity. We build distributed 
systems that allow data and computa-
tion to spread out over a large number 
of servers that partition data and com-
putations as well as manage server 
operations. But whereas data parti-
tioning might be straightforward, 
and the computation partitioning 
might be straightforward, doing both 
at the same time is far more difficult. 

TABLE 1. Results of experiment in which CPU- and 
memory-intensive data generation application was run 

on four-processor Amazon Web Services instance.

Degree of 
parallelism CPU seconds

Normalized CPU 
utilization (%)

Total elapsed time 
(s)

1  259.0 3  257.7 

2  335.0 6  165.0 

2  333.0 6  164.2 

3  306.0 9  102.4 

3  375.0 10  122.5 

4  484.0 13  118.6 

4  482.0 13  117.7 

4  475.0 13  116.1 

4  356.0 13  86.4 

5  563.0 16  110.4 

5  590.0 16  115.6 

6  670.0 19  109.2 

8  993.0 26  121.1 

16  2,200.0 50  137.1 

32  4,832.0 89  170.1 
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Further, if we embed these decisions 
in our software, then when the land-
scape changes, software has to be 
revised. Often, data has to be reparti-
tioned when the amount or “shape” of 
it changes. We build increasing layers 
of abstraction to address this, which 
often has unintended negative per-
formance consequences. Data center 
operators and software engineers face 
these complexity challenges daily.

Can we rethink the problem and 
build a different kind of computer that 
is much easier to deal with than the 
situation we now face with the perva-
sive, inexpensive, ubiquitous clusters 
that industry provides? In contrast 
to these scale-out systems, we define 
a new scale-up system. Scale-up has 
the advantage of having a much sim-
pler programming model but at a cost 
of expensive, less flexible hardware; 
scale-out has the advantage of more 
flexible and cost-efficient hardware, 
but incurs a higher cost of software 
complexity and data partitioning. For-
tunately, these two models need not be 
mutually exclusive. We can use scale-
out hardware to build scale-up com-
puters which, in turn, can run scale-
out software. 

Early attempts at solving the scale- 
up problem were not altogether success-
ful. Two examples immediately come 
to mind: the Encore Ultramax4 built for 
DARPA and the KSR-1.5 Both provided 
an easy-to-use programming model: 
multiple processors sharing strongly 
cache-coherent memory. Many have 
pointed out that earlier advances in 
single-stream performance of micro-
processors made these higher-com-
plexity projects less desirable than the 
alternative of simply utilizing faster 
uniprocessors. But microprocessors 
hit a wall; single-stream performance 
stopped increasing, constrained by 

limitations on power consumption and 
heat dissipation. Single-stream proces-
sors evolved into multicore processors. 
Even that was not enough to satisfy 
emerging needs. Hyperthreads, which 
give the illusion of being processors but 
in fact contend for common hardware, 
began to emerge for greater system uti-
lization. The levels of hierarchy grew to 
encompass multiple hyperthreads per 
core, multiple cores per processor, mul-
tiple processors per server, and multiple 
servers per rack. This in turn resulted 
in racks of multiprocessor multicore 
servers, rows of racks of servers, and 
networked datacenters each consist-
ing of the rows of racks of servers at 
major cloud providers. Although some 
of this cannot be avoided, it is probably 
worth asking whether we could sim-
plify at least some of it. Could we also 
reduce the number of OS images under 
management?

WHY REVISIT THIS TOPIC 
NOW?
In 1984, we submitted a research pro-
posal to DARPA to develop a distrib-
uted approach to managing coherent 
shared memory using recently intro-
duced hardware multiprocessors con-
nected together in a bus topology.4 The 
proposal was subsequently funded, 
and the resulting machine was demon-
strated to DARPA in early 1989.

Bell writes:6 

The most important part of virtual 
memory is locality as embod-
ied in the concept of the working 
sets and hardware managed 
caches. The aspects of virtual 
memory and caches are what 
the all-cache architecture uses 
to “cache” the active portion of a 
program and automatically exploit 
temporal and spatial locality.

He also writes:

Cache only, a natural extension 
of virtual memory and multipro-
cessor caching, first permits a 
single data item to exist in more 
than one location at a time. Once 
a memory page is brought from 
secondary memory to one of the 
nodes, hardware and software 
automatically move, replicate 
and control data flow with other 
nodes on an elemental basis.

However, in 1999, Bell published a 
paper7 that questioned whether a more 
costly and complex distributed approach 
to maintaining coherent shared mem-
ory would ever find widespread adop-
tion and be competitive with simple and 
straightforward clusters. Hence, large 
programs were doomed to intensive 
reprogramming using MPI.

In 2012, we were discussing the 
topic again, and decided it was worth 
taking another look at the problem 
of single-systems image systems,8,9 
and distributed shared memory.10 
The company TidalScale was formed 
to build a software-defined, scale-up 
server composed of multiple scale-out 
computers. TidalScale’s goals were the 
following:

 › Use off-the-shelf, relatively inex-
pensive commodity servers.

 › Take advantage of hardware 
advances that support vir-
tualization as a first-class 
part of modern computing 
architectures.

 › Build a virtual machine that 
would run across a tightly cou-
pled set of networked servers. 
The virtual machine would be 
built on a set of cooperating 
hyperkernels, each running on 
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a single discrete server. We call 
this a software-defined server 
(SDS; Figure 1). This is the inverse 
of what we think of as virtual 
machines,11 in which a number of 
virtual machines run simultane-
ously on a single server.

 › Create a resulting architecture 
that could scale linearly in cost 
and dynamically over time.

 › Run any one of a set of guest OSs 
from their original distributions 
in the virtual machine with no 
changes at all (that is, they are 
bit-for-bit compatible). 

 › Continue to run without mod-
ification any application that 
already runs on one of those OSs.

 › Enable the virtual machine 
to optimize its own behavior 
through introspection and 
machine learning without any 
human intervention.

 › Allow the virtual machine to 
inherit, as much as possible, 
future hardware innovations.

ACHIEVING CHAMPAGNE 
SCALABILITY ON A BEER 
BUDGET
A recent paper12 discusses an inter-
esting financial application using 
historical stock information that 
uses approximately 6 Tbytes of an in- 
memory data in a table containing 6M 
rows and sorts the rows by one of the 
columns. It should have been simple, 
but because of memory limitations, 
it was not. Rather than moving rows 
of data around in memory, we created 
an array of pointers to rows and sorted 
the array of pointers. While this is the 
obvious algorithmic solution, it is prob-
lematic. One can buy machines today 
with large amounts of memory, but 
unlike clusters, the cost of the machine 
is not linear in the size of memory. 

The availability of large coherent dis-
tributed shared memory enabled the 
more straightforward solution. It was 
also affordable, because it enabled a 
system that can evolve over time and 
has a strictly linear cost profile (that 
is, adding a node to a 10-node system 
increases the cost by only 10 percent). 
Moreover, it increases the aggregate 
available memory and PCI bandwidth 
by the same 10 percent.

Many hardware and software inno-
vations have emerged in the last 30 
years that can be exploited, including 
but not limited to

 › increasing memory density;
 › emergence of larger caches 
with more levels in the cache 
hierarchy;

 › convergence on the X86 hard-
ware instruction set;

 › emergence of high-volume, 
cost-optimized computer 
systems;

 › emergence of multicore proces-
sors with increasingly higher 
core density;

 › broad use of commodity OSs and 
applications that support sym-
metric multiprocessing;

 › emergence of multiple multicore 
processors that can now coexist 
on a single motherboard;

 › hardware support for and 
broad use of high-performance, 
binary-accurate virtualization 
software; and 

 › lower latency networks based 
on cost-effective VLSI switch-
ing capable of high bandwidth 
utilization.

One way to exploit these advances 
would be to build large, scalable coher-
ent memories that can be easily uti-
lized by a large number of processors. 
However, this is easier said than done. 
Modern OSs are written to use proces-
sors having a view of memory that is 
symmetric and strongly coherent and 
with uniform access latencies. While  
it is certainly true that OSs have inter-
faces that allow applications to exploit 
nonuniform latencies, they are diffi-
cult to use effectively. Further,  it is 
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sometimes difficult to maintain the 
necessary changes as the data and 
compute landscape changes. Simi-
larly, applications have similar views 
of virtual memory, in that main mem-
ory access is assumed to have the same 
uniform latencies. 

A basic tenet of computing is that 
caching improves performance. Larger 
caches are generally better than smaller 
ones. More levels of cache hierarchy 
work. Intel Xeon processors provide 
three cache levels, called L1, L2, and 
L3. Access to primary memory without 
caches is not particularly fast. Typical 
access ratios are shown in Table 2.

Multiple levels of caches help sat-
isfy the illusion of low latency. It works 
well, up to a point. Hardware-based 
caches have limited, fixed sizes defined 
by physical silicon-layout constraints 
and cost. In addition, coherency algo-
rithms are defined in hardware. In 
contrast, software is far more flexible.

Extending the model, the Tidal-
Scale hyperkernel models all the 

primary memory DRAM on a moth-
erboard as an L4 cache of the virtual 
machine. In a sense, we have replaced 
all physical memory with a distributed 
L4 cache. The guest OS, running in a 
virtual machine, does not know this, 
in the same way that a guest applica-
tion does not know when it is accessing 
data out of an L3 cache instead of going 
directly to DRAM. Some people refer 
to this as an “all-cache” design. No 
changes to the guest OS are required. 
From the above ratios, we now see the 
“magic” as to why software caching 
works—several hundred instructions 
can be executed in the time it takes to 
move data from L4 to a register.

Certain applications might behave 
poorly given the limitations of L1, L2, 
and L3. Experienced users can write 
programs that exhibit very poor per-
formance on today’s “bare metal” 
servers. But this does not mean that 
we should get rid of caches, because 
in practice we know the benefits of 
caches over a wide range of applica-
tions and have broadly concluded 
that caches are helpful. Do certain 
applications behave better by care-
fully exploiting nonuniform memory 
access latencies? Yes.

 It is beyond the scope of this article 
to fully describe all the ways virtual-
ization is now supported in hardware, 
but  it is perhaps sufficient to review 
the process of an application accessing 
memory. An application typically ref-
erences memory in a virtual address 
space. When a virtual address is refer-
enced by a processor running the appli-
cation, the processor translates that 
virtual address to a physical address 
by consulting a page table that maps 
application virtual addresses to phys-
ical addresses. Page tables are main-
tained by an OS. We call an OS running 
on a virtual machine a guest OS, and 

the page tables that the guest manages 
become first-level page tables. 

In a virtual machine, there can be 
multiple levels of virtual to physical 
address translation. Just as an OS takes 
an application virtual address and 
translates it to what it thinks is a phys-
ical address, a virtualization system 
takes that guest physical address and 
converts it to a real physical address. 
Today, two levels of address translation 
are widely supported, but the key con-
cept is extendable in that one could eas-
ily envision stacked virtual machines 
using the similar algorithms. 

Today, a software construct called 
containers largely obviates the need for 
additional levels of virtual machines. 
Containers let a user package pro-
grams and data, instantiate, transmit, 
and run them with consistent results 
and similar performance on other sys-
tems. In the world of big data, larger 
containers are preferred. Because con-
tainers run above an OS, they work 
without modification in an SDS.

However, there is a much less obvi-
ous advantage in having the machinery 
to support these virtual machines. Due 
to the greater flexibility of software 
over hardware, the machinery manag-
ing the interface between virtualized 
machines and physical machines is 
an excellent place to implement many 
optimizations and enhancements that 
cannot easily be implemented in hard-
ware. With this machinery, we do not 
have to modify an OS, which might be 
proprietary, or in the interest of stan-
dardization, tightly controlled. Vir-
tualization software can implement 
introspection, intelligence, machine 
learning, resource tracking, teleme-
try statistics, mobilization, working 
set tracking, and I/O virtualization. 
Through message passing, it can also 
provide an enhanced global view of the 

TABLE 2. Typical access 
ratios for three Intel Xeon 
processor cache levels.

Source
Latency 

(ns)

Registers 0

L1 4

L2 10

L3 near, unshared, unmodified 40

L3 near, shared, unmodified 65

L3 near, shared, modified 75

L3 far min 100

L3 far max 300
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behavior of an SDS without having to 
introduce any shared hardware state. 

We have found it desirable to intro-
duce that concept of a virtual mother-
board. At TidalScale, we provide a virtual 
motherboard as part of an SDS. A virtual 
motherboard can span many individ-
ual hardware servers (Figure 1). Unlike 
a physical motherboard, it can grow and 
shrink either explicitly on a user-driven 
basis, or automatically as needed. 

Resources like virtual general- 
purpose processors, virtual memory, 
virtual networks, and virtual disks 
can migrate. Virtual interrupts can be 
remotely delivered. As long as the basic 
hardware abstractions expected by the 
OS are not violated, a virtual machine 
can look to the OS just like a physical 
machine. Because the virtual machine 
looks like hardware from the OS’s point 
of view, compatibility tests are run as if 
the virtual machine were in fact a phys-
ical machine. Today, multiple OSs are 
supported (Centos, Red Hat, Ubuntu, 
and FreeBSD). Windows Server runs 
but is not released at this time.

There is an identical instance of the 
hyperkernel running on each node of 
the virtual machine. Due to physical 
hardware boundaries, a physical pro-
cessor cannot directly address every 
guest physical address. When a guest 
physical address needs to be read or writ-
ten, it must be translated into a physical 
address that the processor can access. 

This translation is handled through 
the processor’s second-level page 
tables. When software makes a ref-
erence to a guest physical address, if 
the page of memory containing that 
address is resident on the node that 
has the processor that generated that 
address, the address is represented in 
the second-level page table. Automatic 
address translation hardware will 
then translate that address to a guest 

physical address and then to a real 
physical address as it normally does by 
using the first- and second-level page 
tables, with no performance degrada-
tion. But, if the memory address is not 
present in the second-level page table, 
the hardware cannot completely trans-
late that guest address to a real physi-
cal address, the processor generates an 
interrupt. The hyperkernel fields that 
interrupt, and analyzes the request, 
similar to what an OS might do when it 
needs to copy a page that is not memory- 

resident, but only resident on backing 
store. That analysis might result in a 
request for that page to be sent from 
a different node, or it might result in 
a decision to migrate that virtual pro-
cessor to the node that has that page of 
memory. Page reads and page writes 
are handled differently. Readable 
pages can be replicated,6 but a writable 
page requires additional overhead to 
remove that page from the L4 cache 
of other nodes that might have a copy 
(invalidation). (The actual set of steps 
is far more complex than what we have 
outlined.) 

To migrate a virtual processor, the 
hyperkernel uses a standard mecha-
nism to take a snapshot of the state of 
the processor (at this writing, approx-
imately 6,400 bytes of data) and sends 
it in a message over the dedicated 
Ethernet to the chosen destination, 

where it can be restored onto another 
physical processor. Saving and restor-
ing processor state is now standard 
for processors supporting virtualiza-
tion. The program counter has not 
advanced, so the instruction is then 
restarted. Because the page and the 
virtual processor are now co-resident, 
the processor continues running. It 
is possible that the instruction gen-
erates additional interrupts to access 
different nonresident pages, but the 
mechanism is the same. When the vir-

tual processor migrates, its updated 
location is recorded. However, for 
reliability, we never assume per-
fect location knowledge, because the 
processor might have subsequently 
remigrated. 

WHY DOES A SOFTWARE-
DEFINED, SCALE-UP 
COMPUTER RUNNING ON A 
COMPUTER CLUSTER JUST 
WORK?
In his seminal paper on working sets, 
Peter Denning13 asserted that proces-
sors needing pages can often arrange 
to have those pages in memory rather 
than backing store. We have signifi-
cantly generalized this notion of work-
ing sets to include not only memory 
but processors, I/O, interrupts, stor-
age, and so on. If we could do a per-
fect job, we would make sure that all 

RESOURCES LIKE VIRTUAL GENERAL-
PURPOSE PROCESSORS, VIRTUAL 

MEMORY, VIRTUAL NETWORKS, AND 
VIRTUAL DISKS CAN MIGRATE.
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processors were co-located with all 
the memory they reference. Of course, 
we cannot guarantee that in general, 
but on a statistical basis, the system 
works well. It is also important that 
once a working set is established,  it 
is not unnecessarily destroyed. Fur-
ther, because each hyperkernel inde-
pendently learns about the state of 
the computation as it proceeds, it con-
tinues learning about the pattern of 
memory accesses for virtual proces-
sors and can factor that into discrimi-
nating between migration versus page 
copy or page move. 

The hyperkernel can also rate 
the goodness of the decisions  it is 
making and provide strategic feed-
back to itself. For example,  it is very 
straightforward to track guest exe-
cution time and the number of stalls. 
If the ratio between them is high, the 
computation is “good”; if not, it can 
use improvement. The hyperkernels, 
taken together as a virtual machine, 
begin to automatically adapt to the 
pattern of memory access for each vir-
tual processor. 

To minimize overhead, the hyperk-
ernel needs to minimize 

number of stalls * the average stall time .

Each hyperkernel instance main-
tains a model of its own behavior and, 

through introspection, can share it 
among its peers and adjust its behav-
ior. These algorithms are run very 
frequently, and this allows for the vir-
tual machine to quickly adapt to the 
observed pattern of accesses.

This is where the machine learn-
ing comes in. The hyperkernels, taken 
together, watch the progress of the 
computation, and through coordina-
tion, learn good ways of dealing with 
locality and nonlocality. They then 
remember the decisions they make 
and use those decisions to help make 
subsequent decisions.

PERFORMANCE 
CONSIDERATIONS
Our goal is to achieve 100 percent 
binary compatibility, both in OSs and 
applications, and thereby substantially 
simplify the computer system land-
scape while at the same time providing 
good performance and high reliability. 
To do that, we designed a very general 
system that works over many classes of 
applications. Our goal is to do as good 
a job as we can on every workload run-
ning on every popular OS. 

This has been largely achieved. All 
common applications we have tested 
work (MySQL, Oracle, SAP/Hana, appli-
cations in R, Python, and so on). 

We also need to consider the per-
formance of these systems. It might 
not be possible to broadly characterize 

classes of applications as good can-
didates for SDSs. It is important to 
realize that the execution profile of 
an individual application is depen-
dent only on the program and its data. 
This access pattern is fixed for single- 
threaded applications. The actual per-
formance might vary according to 
processor speed, cache size, levels of 
cache hierarchy, amount of memory, 
memory bandwidth, onboard commu-
nication contention, paging activity, 
interference from other processes or 
processors, and so on, but the pattern 
of access is generally deterministic 
(more so for single-threaded programs 
than multithreaded programs). Unfor-
tunately, there is no expectation that 
programs in the same application class 
will share the same access patterns.

Specific access patterns are not gen-
erally factored into processor design. 
Designers test against existing rep-
resentative workloads. There was, 
and still is, no guarantee that today’s 
architecture will be appropriate for 
tomorrow’s workloads. This has noth-
ing at all to do with the concept of a 
virtual server; rather, it is fixed by the 
requirements of sample benchmarks. 
At TidalScale, we have adopted a sim-
ilar approach.

To get good performance, we need 
to minimize L1–L4 cache misses. With 
the hyperkernel managing L4, if a 
page of memory is not on the node that 
is running some core that is request-
ing that page, we incur overhead. If 
it were L1–L3, hardware might trig-
ger a cache invalidation, a TLB shoot-
down, and a new copy might have to 
be fetched from memory. The situa-
tion is the same with L4, except that 
the hyperkernel does not fetch it from 
local main memory but, rather, from 
remote memory. This results in a net-
work transaction between nodes. 

WE DESIGNED A VERY GENERAL SYSTEM 
THAT WORKS OVER MANY CLASSES OF 

APPLICATIONS.
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This is analogous to what a processor 
needs to do when accessing memory 
over Intel’s QPI, SCI, or AMD’s Hyper-
Transport. L1–L3 latencies vary by, for 
example, memory contention, number 
of sockets, number of memory banks, 
speed of memory, and available band-
width to memory. The same is true 
with the hyperkernel’s distributed L4 
cache. As we suggested earlier, mem-
ory access times might be surprising.

The questions about performance 
of this sort of software virtualiza-
tion reduce to the question of how 
often a page access pattern causes 
cache “breakage.” The simple answer 
is that cache misses occur in the case 
of L1–L3, when the cache is not smart 
enough to predict future access pat-
terns. This is generally unpredictable. 
Larger cache sizes for L1–L3 reduce 
the probability of cache misses. The 
same is true for L4. But the L4 cache 
size of an SDS is enormous relative to 
the sizes of L1–L3. The L4 cache on the 
hyperkernel consists of all the mem-
ory on the motherboard. Therefore, 
the L4 cache size might be 256 Gbytes, 
500 Gbytes, 1 Tbyte, or more. Also, 
the hyperkernel has the advantage 
of much more sophisticated cache- 
coherency and cache-management 
algorithms than can be implemented 
in silicon. 

There might be concern that this 
sort of system would put an enor-
mous amount of pressure on the vir-
tual backplane and require enormous 
bandwidth. This is not the case. If 
the SDS can co-locate processors and 
memory, there is no overhead at all. 
Smarter algorithms coupled with 
machine learning show a measured 
bandwidth utilization of 5 percent 
for a class of simulation applications 
on a dedicated virtual backplane (for 
example, 10 Gigabits Ethernet).

APPLICATIONS: THE PROOF 
IS IN THE …
Earlier we raised the question about 
which classes of applications are par-
ticularly well suited for SDSs, and 
which are not. Unfortunately, this is 
very difficult to determine. Applica-
tion classes do not display sufficient 
uniformity in their usage of different 
layers of L1–L4 cache hierarchy. If past 
access patterns are not a good predic-
tor of future access patterns, the prob-
ability of cache misses can be high. 

L4 cache hit statistics dominate 
performance. Two examples of poor 
L4 cache performance have been 
observed: 

1. In a specific implementation 
of computational genomic 
sequencing, when run on a 
software-defined server whose 
nodes had 256 Gbytes of real 
memory, a large array (250 
Gbytes) was being rehashed on 
every update, making pre-
diction difficult. As a result, 
there was a high probability 
of not having that part of the 
array local to a node when 
needed. When the memory 
size was increased from 256 to 
320 Gbytes, the problem was 
resolved. The initial program 
had been trying to conserve 
memory, which is not a good 
idea when the amount of mem-
ory is adjustable. Once realized, 
a new version of the program 
resolved the problem.  

2. The second instance also has 
to do something that is dif-
ficult to predict: in a heavily 
multithreaded (multiproces-
sor) application, we observed a 
lot of contention on a cen-
tral shared lock in a Python 

runtime library, causing the 
containing page to frequently 
migrate between nodes. How-
ever, the same contention 
pattern would happen among 
multiple cores on different 
processors on a single moth-
erboard when accessing the 
same lock. The L1–L3 caches 
of those processors would 
have a difficult time figuring 
out which cache is the best 
one to contain the lock, and 
as a result, the lock would 
constantly migrate between 
caches, resulting in poor per-
formance. When this applica-
tion was modified to reduce 
unnecessary sharing, perfor-
mance increased by an order 
of magnitude.

The system performs particularly 
well when we find a use case that hits 
the “memory cliff”—a program and 
its data that could benefit from being 
totally memory resident with suffi-
cient available memory. The desired 
memory footprint need not be very 
much larger than the available mem-
ory14 to cause thrashing, which then 
causes an OS to start paging. This is 
entirely normal and frequently hap-
pens. The application will continue to 
work, but it will underperform. Unfor-
tunately, no matter how fast a backing 
store is,  it is several orders of mag-
nitude slower than DRAM. Even the 
fastest SSDs on the market are often 
three orders of magnitude slower than 
DRAM. Faster backing store latencies 
have never been able to compete with 
DRAM latencies. 

Consider the following case 
study.15 An application ran a MySQL 
job of three queries over a data-
base with 100,000,000 rows and 100 
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columns, taking seven hours to com-
plete on a server with 128 Gbytes of 
memory. The memory required was 
greater than the memory capacity of 
the server, resulting in frequent pag-
ing. When replaced with two 96-Gbyte 
nodes for a total of 192 Gbytes of physi-
cal memory running an SDS, the exact 
same set of queries on exactly the 
same data took about seven minutes 
to complete, resulting in a 60× perfor-
mance speedup. Paging was entirely 
eliminated.

In another study, we worked with 
a large financial institution to run an 

analytics simulation model of customer 
behavior. This was not a performance 
experiment in the traditional sense: 
the customer had never been able to 
run a simulation this large before, so 
there was no before-and-after compari-
son. The model was run on an SDS with 
3.5 Tbytes of memory, running trans-
parently across five physical servers. 
Because the customer could perform 
the simulation in memory, it was able to 
run the simulation at a 1:1 granularity 
level and perform a three-part analy-
sis including granularity analysis, 
sensitivity analysis, and model opti-
mization. In essence, this experiment 
removed traditional limitations and 
enabled exploratory analysis without 
changing the models, tools, or operat-
ing environment.

COMPATIBILITY AND 
RELIABILITY
Compatibility is very clear. Because 
the hyperkernel looks like hardware 
to the OS, compatibility should be, and 
is, 100 percent.

Additionally, the guest has its own 
reliability features, for example, RAID. 

Although the general topic might 
be beyond the scope of this article, 
the SDS provides new ways to improve 
reliability due to the new virtualiza-
tion level mentioned earlier. 

When the following common condi-
tions are satisfied, we gain in reliability:

 › Early indicators signal a possible 
impending hardware failure. 

 › Mechanisms exist that allow con-
tinued correct operation prior to 
an unrecoverable failure. 

 › There is sufficient time between 
early indicators and the unrecov-
erable failure to adjust behavior.

Considering that resources are all 
mobile, previously configured hot 
standby machines can be utilized. 
When failure is suspected to occur 
in the near future due, for example, 
to soft error-correcting code errors, 
rising server temperature, or higher 
than normal network anomalies, it 
can be dealt with by dynamically add-
ing an additional hot standby node to 
the cluster, informing all nodes about 

the pending node failure so that they 
do not migrate any virtual proces-
sors to it, and having the failing node 
evict virtual processors at the earliest 
possible time, and pages of memory 
in active use. The mechanisms to do 
this all exist as a byproduct of resource 
mobility. For example, if a processor 
fails on access to a page on a remote 
node, we would normally migrate the 
processor to that node, or migrate the 
page to the requesting processor. If the 
remote node is failing, we will migrate 
the page to some other node that has a 
copy. In other words, rather than trying 
to come close to the reliability of a sin-
gle server, our goal is to have the SDS 
exceed it, because we can replace nodes 
containing resources in real time with-
out rebooting the guest system.

We have presented the case for 
an innovative, modern dis-
tributed, coherent, shared 

memory system hosted by virtually any 
cluster of computers. The advantages of 
the SDS architecture are clear. A single 
system image provides a much simpler 
programming model, and a much sim-
pler datacenter server management 
model, especially for large containers. 
Scale-out systems are more complex 
from a software and operational sup-
port perspective, but less expensive 
than traditional HPC scale-up comput-
ers. Scale-up is simpler for applications 
and operations. The advantageous 
hardware cost and flexibility efficien-
cies of scale-out can be achieved with 
the inherent simplicity of scale-up 
using the same cost-efficient hardware.

We have shown here

 › that both scale-up and scale-out 
systems can effectively host an 
SDS; 

APPLICATIONS CAN BE WRITTEN IN A 
MORE CONVENTIONAL AND SIMPLER 

WAY WHEN HOSTED BY SDSS.
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 › that by introducing a layer 
of software above the hard-
ware but below the OS, we can 
increase the set of automatic 
optimization possibilities and 
create a place to introduce 
machine-learning into computer 
systems without having to cre-
ate new hardware; 

 › that, in the aggregate, mem-
ory and I/O bandwidth can be 
increased without resorting to 
new hardware designs; and 

 › that by mobilizing both virtu-
alized processor and memory 
resources we minimize inter-
connect bandwidth require-
ments. Applications can be 
written in a more conventional 
and simpler way when hosted 
by SDSs. SDSs often reduce the 
need for explicit data partition-
ing and partitioning manage-
ment. This translates directly 
to the ability to build large, 
diverse application programs 
reliably and rapidly. 
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